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CONTINUOUS-FLOW SYSTEM WITH FRACTIONAL ORDER CHEMICAL REACTION 
IN THE PRESENCE OF AXIAL DISPERSION* 

1u.P. GUPALO, V.A. NOVIKOV and 1u.S. RIAZANTSEV 

A detailed analysis of an irreversible single-stage chemical reaction of fractional 

order is carried out using a mathematical model of one-dimensional isothermal 

chemical reactor with axial dispersion. 

Analysis of mathematical models of continuous-flow chemical reactors shows thata change 

from steady conditions of the reaction process in a continuous-flow system in whichtheinitial 

concentration of reagent at reactor inlet is constant, to the dynamic mode with cyclic vari- 

ation of initial reagent concentration about a mean value equal to that of the steady mode 

results, under certain conditions, in an increase of the degree of reagent transformation (see 

e.g., /l-7/). The relative effectiveness of the periodic mode compared to thatofthe steady 

mode can be defined by the magnitude of unsteady shift: the degree of transformation diverg- 

ence, averaged over a period of time, from that of the steady mode. In a continuous-flow 

chemical reactor with axial dispersion the unsteady shift depends on dispersion intensityand 

chemical reaction kinetics. 
An approximate analytic expression was obtained in /7/ for a model of one-dimensional 

continuous-flow chemical reactor with axial dispersion, in which a quasisteady irreversible 

single-stage chemical reaction takes place. The expression obtained there in the "weak" 

chemical reaction approximation for the unsteady shift, established the relation between the 

longitudinal diffusion coefficient, and properties of the function of chemical reaction rate. 

The formula indicates the presence of a singularity in the reactor unsteady behavior whenthe 

reaction is of an order close to l/2. Because of the wide use of this type of reactions a 

more detailed investigation of this problem is presented here. 
The unsteady equation for concentration, and for the boundary and initial conditionscan 

be represented in dimensionless variables as follows: 
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where X is a space coordinate (0 <X< L), L is the reactor length, T is the time, C is 

the reagent concentration in the reactor, Ci, is the initial concentration distribution, Ci 

is the concentration of reagent at the reactor inlet, co is the steady value of concentra- 

tion Cf, lf is the reagent feed rate, D is the coefficient of effective diffusion, F(C) de- 

fines the dependence of chemical reaction rate on the reagent concentration, and P is the 

P&let number. We also introduce the quantity E = (C, - C)IC" which defines the degree of 
reagent transformation. 

Let us assume the dimensionless rate of the chemical reaction to be low, i.e. thatf(c) : 

ef, (c) = 0 (s), s<l ("weak" chemical reaction), and restrict the analysis to quasi-periodic 

perturbations, assuming that function c,(t) varies only little in a time interval comparable 

to the characteristic time of /reagent/ passing through the reactor. 
We seek a solution of problem (1) in the form of series in powers of E, accurate to 

within terms of third order of smallness, and obtain for the quasisteady distribution of con- 
centration in the reactor the following relations: 
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Using formula (2) for the reagent concentration at the reactor exit we obtain 

where c, (1) is the argument of function fl and its derivatives. 

Using (31, for the unsteady shift in quasisteady approximation it is possible to obtain 

;Ag: = tG,, - EZGQ (P) + c3 IG,Q,(P) + G&,(P)1 + 0 (E4) (4) 
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where the angled brackets denote averaging over the period of variation of function Cf (0. 
The term of first order with respect to E is obviously independent of the P&let number, 

and the effect of longitudinal diffusion on the unsteady shift makes itself felt only in the 

second approximation. Formula (4) was analyzed in /J/ to within terms of order ~2, and the 

obtained there results are applicable to a wide class of kinetic functions f,(c). 

However for some of functions jI ’ ip) parameter G may be small or zero (for instance,G -0 

when ji (2) 3 /;,c"9. To estimate the effectoflongitudinal diffusion on the unstable shift it 

is necessary to analyze (4) with an accuracy to terms of higher of E. In the analysis we 

assume that the reagent concentration at the reactor inlet varies in conformitywithsharmonic 

law and at small amplitude, i.e. c (t) = 1 f 6g, L;in ml, 6 < I. Then from (4) we can obtain 

Let the reaction rate dependence on concentration conform to the law i, (c) = :;,c s',+cll, 0 _ 

O(l). Then, setting Cs = E and using formula (51, we obtain 

W(P)=- ;Ol(P).-+n,(P:7 -d!(P), 
Ifi’, 

a=x 

Equality (6) implies that in the considered here kinetic dependence ;AE)<O, i.e. the trans- 
formation rate in the unsteady mode is slower than in the steady mode. The effect of long- 

itudinal mixing on the unsteady shift is determined by function W(P) whose curves are shown 

in Fig.1 for several values of parameter CZ. The pattern of the W(p) curve substantially 

depends on parameter a which is determined by the order of the reaction and by the rate con- 

stant. 
Depending on a the CV(Pr curve can be monotonic (increasing or decreasing), as well as 

nonmonotonic, in particular, to have a maximum (2 -= -1) and a minimum (% m: -1.09), whose 

positions also depend on IX. 
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When a > -0.5, curve W(P) monotonically increases, attaining its maximum at&,, = 00. 

The decrease of parameter a leads to function W(p) attaining maximum already at finite 

P&let numbers. The quantity P,,, decreases with decreasing a, i.e. the maximum shifts to 

the left. For a close to -0.5 we have 

Pm,, (a + -0.5-O)- 

0 5 10 15 P 
Fig.1 

12 (a - 1.5)ll(a + 0.5) 

Fig.2 

When parameter v. passes through the value a = -1, 
P min =0 and Pain 

curve W(P) has a minimum at point 

increases as.a decreases. When a is close to -1 we have 

Pm,, (a+ - 1 + 0) z (a + 1)/(0.5a + 0.3) 

Further decrease of parameter a results in the merging of maxi and minimum, and the 

w(P) curve becomes monotonically decreasing. 
At the limit points P=O and P =cm the dependence of W(P) on parameter a is of 

the form W(0) = -a -0.5, w(m) = -0.5 a. It will be seen that for a=-1 we have 

W(0) =W(oo). 
The above investigation of function W(P) enables us to formulate the following conclu- 

sions about the effect of longitudinal mixing on the magnitude of unsteady shift. 

When a > -0.5, longitudinal mixing reduces the absolute value of the unsteady shift 

([(A&I) which is maximum in a reactor of perfect displacement (P = co). 
When -0.5<a<-I, the longitudinal mixing may (depending on the P&let number) either 

decrease or increase the absolute value of the unsteady shift which is maximum in a reactor 

with intermediate longitudinal diffusion intensity. The maximum value of unsteady shift in 
a reactor of perfect displacement exceeds the respective quantity in a reactor with perfect 
mixing. 

When a<-1, the effect of longitudinal mixing on the absolute value of the unsteady 
shift may become even more complex (Fig.1, a = -1.09). 

of the P&let number, 
Depending on the range of variation 

the longitudinal mixing may either decrease or increase the absolute 
value of the unsteady shift. 

Further decrease of parameter a results in a monotonic dependence of the unsteady shift 
on the degree of mixing (Fig.1, a = --1.6), and the longitudinal diffusion increases the 
absolute value of unsteady shift which is maximum in a reactor with perfect mixing. 

When a=-1, the magnitude of unsteady shift in a reactor of perfect displacement is 
equal to that of the reactor of perfect mixing. Note that it is at point a = -1 and its 
neighborhood that the depencence of the unsteady shift on longitudinal dispersion becomes non- 
monotonic. At that characteristic point(a = -1) the rate constant is k, = --16b/3. The dis- 
closed singularity can be expected to appear also in the case of finite chemical reaction 
rates. 
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Let us now consider the expressions for the unsteady shift in the limit cases of kinetic 

dependence I(c)= kc" (iJ -= O), viz. in that of the reactor of perfect mixing and of that of 

perfect displacement, without assuming the reaction to be weak, but considering the harmonic 
perturbations of concentration at the reactor inlet to be small. Using the method of small 
perturbations in the quasisteady state approximation, we obtain 

The dependence of absolute values of unsteady shift in reactors of perfect mixing and 

perfect displacement (7) and (8) is shown in Fig.2 as functions of the dimensionless constant 

ir of the chemical reaction rate, with g= spl. It will be seen that the unsteady shift in 

a reactor of perfect displacement is higher than that in one of perfect mixing; the curves 

intersect only at point k = 0, which is in agreement with the results obtained above in the 

analysis of a "weak" reaction. 

Thus the unsteady shift interacts in a complex way with the longitudinal mixing, which 

results in the different situations described above. The above investigation shows the sub- 

stantial effect of the presence of longitudinal dispersion on the dynamic characteristics of 

a continuous-flow chemical reactor. This must be taken into account in the selection of the 

optimal type of chemical reactor for operation under unsteady conditions. 
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